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1

A multi-armed bandit problem arises when a single key resource is available for allocation
to a fixed collection of projects or bandits. These projects evolve stochastically while in
receipt of service (i.e. while the resource is allocated to them) and earn state dependent
returns as they do so, but remain fixed (and earn nothing) otherwise. Gittins and Jones
(1974) elucidated the optimality of indez policies for certain classes of multi-armed bandit
problems. Such policies attach a calibrating indez to each project, a function of that project’s
state, and choose at each decision epoch to allocate resource to whichever project has the
largest associated index. See also Gittins (1989). An extensive literature exists outlining
a range of extensions and developments of Gittins’ classical work while various schemes for
index computation have been proposed. See, for example, Whittle (1980), Weber (1992),
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Abstract

A single Red wishes to shoot at a collection of Blue targets in order to maximise
some measure of return obtained from Blues killed before Red’s own demise. While
the class of decision processes called multi-armed bandits has been previously deployed
to develop optimal policies for Red, we argue the importance of a little known, but
more general class of bandit processes introduced by Nash (1980). In particular, the
deployment of this class of processes will enable Red to take account in a natural way of
the relative threats posed to his own survival in taking targetting actions. We develop
optimal shooting policies for Red in the context of a range of models which are of
independent interest. The paper concludes with a numerical study.

Introduction

Katehakis and Veinott (1987) and Bertsimas and Nifio-Mora (1996).
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Recently, Glazebrook and Washburn (2004) have discussed the utilisation of the multi-
armed bandit framework and the associated index policies to develop optimal shooting poli-
cies. Here the “key resource” is a single shooter (Red) and the “projects” form a fixed
collection of targets (Blue). Red’s goal is to so target the Blues as to maximise the expected
number (or value) of kills achieved. Manor and Kress (1997) had previously utilised the the-
ory of multi-armed bandits to analyse a shooting problem in which Red receives incomplete
information regarding the outcome of successive shots. If a shot is unsuccessful (the Blue
target is not killed) then Red receives no feedback, while if the target is killed, that fact is
confirmed to Red with probability less than one. Manor and Kress (1997) demonstrate the
optimality of a form of index policy (the greedy shooting policy) for their setup. Barkdoll
et al. (2002) develop index policies for Red in situations in which, not only must he choose
which Blue to target, but also how to operate engagement radar in support of each shot.

In a little known early development of Gittins’ work, Nash (1980) elucidated the optimal-
ity of index policies for a class of generalised bandits in which a form of reward dependence
is induced between the constituent projects or bandits via a multiplicatively separable struc-
ture. Subsequent theoretical developments of Nash’s work include those of Fay and Walrand
(1991) and Crosbie and Glazebrook (2000 a,b). A general methodology for the computa-
tion of Nash’s indices may be found in Glazebrook and Greatrix (1995). The prime aim of
the current paper is to argue the importance of this class of generalised bandits and their
associated index policies for the analysis of shooting problems. As we shall see, they are
especially effective in situations in which Red’s engagement with the enemy puts him in
danger and that the level of danger may differ according to which Blue he targets. In such
situations, Red’s objective becomes the maximisation of the expected number (or value) of
Blues killed before he himself is destroyed. Now Red’s shooting policy must balance the
returns obtainable from his options against the respective dangers they pose. The index
policies we develop elucidate how this balance should be struck.

Consider, for example, a military scenario discussed by Barkdoll et al. (2002) which is
asymmetric between the enemy forces. Blue has established air superiority in some region
and Red is a surface-to-air missile (SAM) seeking to disrupt Blue’s air campaign. The Joint
Chiefs of Staff use the terms “reactive” or “opportune” suppression of enemy air defences
(SEAD). In Barkdoll et al. (2002) every Red shot at Blue exposed him to danger from a
stand-off Blue shooter. Moreover, in such a situation the level of danger to the Red SAM
may vary according to the Blue targets he chooses. For example, shooting at longer range
puts Red at greater risk to anti-radiation missile (ARM) attack from Blue since the SAM will
need to radiate longer to guide the missile to its target. We introduce models and analyses
appropriate for situations in which Red’s optimal shooting policy needs to take account of
such risks to himself.

The paper is structured as follows. Section 2 presents a general class of shooting problems
in the form of generalised bandit problems. We also describe the nature of the optimising
indez policies. Each of Sections 3-5 feature a particular model along with details of the
corresponding optimal shooting policy. Each of these is of independent interest. Model 1
(in Section 3) is a Bayesian model in which Red is able to learn about the (true) identity
of the Blues he faces as the engagement proceeds. Model 2 (in Section 4) allows for par-
tial/cumulative damage to each target, while Model 3 (in Section 5) extends Model 1 in
allowing Red to supplement the information he has about the Blues he faces by “looking”
(imperfectly) at the most recently targetted Blue after each shot. In Section 6, we exemplify
the performance of the index policies developed in a numerical study. We conclude in Section



7 with a brief discussion of possible extensions and of issues faced by the Blue force.

2 A General Model

A shooter Red has to plan a series of engagements with N Blues. A single engagement must
include a shot by Red at a targetted Blue and may expose Red to the possibility of being
killed himself. An engagement may also incorporate a look by Red to gain information on
the state of the Blue targetted after he has delivered his shot. Red is assumed to have an
infinite supply of bullets. His decision problem concerns the choice of which Blue to engage
next on the basis of his observational history of past engagements to date. Red’s goal is to
maximise his expected return from engagements until he himself is destroyed. Red’s decision
problem is modelled as a Markov decision problem {(;,w;, Pj, R;,Q;,8), 1 < j < N} as
follows:

(1) X(t) = {X1(t), Xa2(¢), ..., Xn(t)} denotes the state of the system at time ¢t = 0,1,2,...
(i.e. before the (¢4 1)** engagement) and X;(t) is the state of Blue j. We require that
X;(t) € Q; U{w;}, where Q; is the space of possible descriptors of Red’s knowledge of
Blues j’s status, while X;(t) = w; indicates that by time ¢, Red has been killed during
an engagement in which he shot at Blue j;

(i) Ateacht=0,1,2,...,if Red is still alive he must choose one of the actions ay, as, . . ., ay.
Choice of a; means that Red’s (¢ + 1)* engagement will target Blue j;

(iii) If action a; is chosen at ¢t then Red observes a Markovian change of Blue’s state
X;(t) — X;(t+1). We write

Pi(z,y) = P{X;(t +1) = y|X;(t) = 2,05}, 2,y € QU {w;}.

Note that ©; may contain a state @; indicating that Blue is dead and that a still alive
Red knows this. In such cases, both @; and w; are absorbing states under Markovian
law P;. Note that when action a; is chosen at ¢ then Xy (t) = Xx(t + 1), k# J;

In order to write down expressions for expected rewards, we shall suppose that an infinite
string of members of {ay,as,...,ay} are chosen and consequential system state changes (as
in (iil)) observed but that rewards can only be collected while Red is still alive. To this end,
we introduce bounded functions R;,@Q; and Rj, all from ©; U {w;} to R*. The quantity
Rj(z) is the expected return secured when action a; is taken at ¢t and X;(¢) = z. Function
Q; is an indicator such that

1, T € Qj
Q](x) - { 0, =wj;
and Ej is the product R;Q;.
Should action a; be taken at ¢, the return generated by the ensuing engagement is written

BRAX; ()} [[ @edXe®} = BRAX; ()} [ ] @ Xk(0)}- 1)
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The @-multiplicative term in (1) ensures that no rewards are earned beyond any point at
which Red has been killed. The quantity 8 € (0,1) is a discount factor and is included
for generality. Provided we make natural model assumptions which guarantee that shooting
stops (with Red dead or all Blues dead) after a finite number of engagements almost surely
then we may also take @ = 1 in what follows and consider undiscounted returns.

A policy is a rule for choosing actions at each t = 0,1,2,... in light of the history of
the process to date. Under policy v, use v(t) for the choice made at t. We write the total
expected return under policy v as

o0
E, | Y A Rup{Xw®) | [T @AX:0}] |- 2)
t=0 FAU(E)

The goal is to find policy v* to maximise the expected return in (2). The above is in the
class of Markov decision models called generalised bandits introduced by Nash (1980). These
models extend the multiarmed bandits of Gittins (1979,1989) by allowing a reward interde-
pendence between the decision options, as expressed in the multiplicatively separable form
to be found in (2). The theory of this class of processes has been developed in Glazebrook
(1993), Glazebrook and Greatrix (1995) and Crosbie and Glazebrook (2000 a,b). For our
purposes, the key fact is that for the class of problems outlined in (i) - (iv), there exists an
optimal policy of index form. This is expressed in Theorem 1.

Theorem 1 (Nash(1980)) There exist functions G; : Q; — Rt such that, if Red is still
alive at t then he optimally engages any Blue j* for which

G X (1)} = max G;{X;(t)}. ®3)

The indices in (3) are broadly of Gittins type. To develop index G;(x) for some z € 2,
suppose that at ¢ = 0, Blue j is in state z and is engaged continuously by Red. Let 7 be a
positive valued stopping time on the resulting process {X;(t),t > 0} which evolves from z
according to the Markov law P;. Use fij (x,7) for the expected return earned during [0,7)
as expressed by

71
Rjz,7) = E | ) A RAX;()}X;(0) = 2|, 4)
t=0
and rewards are automatically terminated at Red’s death. Develop a corresponding reward
rate-like measure as

Gjlw,7) = By(a,m)(1 ~ B Q:{X;(r)}|X;(0) = 2)) ™" (5)
The index G,(z) is the largest such reward rate, namely
Gj(z) = sup G (2, 7). (6)

A general methodology for index computation may be found in Glazebrook and Greatrix
(1995).

We now present three particular models, each of which illustrate and present salient
features of combat scenarios. In two cases, the indices which determine optimal engagement
policies for Red are obtained in closed form. In the more complex “shoot-look-shoot” setup
of Model 3, we give an algorithm for index development.



3 Model 1 - Red learns about the nature of Blue tar-
gets

While the general scenario (Red facing N Blues) is as above, we shall particularise to Model 1
in supposing that Blues come in B types and Red has imperfect information about the Blues
he is facing. Note that “type” designation here may reflect any Blue characteristics which
are relevant to determining outcomes as the conflict proceeds. Red’s uncertainty about Blue
is expressed through IV independent prior distributions Y, 112, ..., II¥ which summarise his
beliefs before shooting starts. Hence II] is the probability that Red assigns to the event
“Blue number 5 is of type ", 1 < j < N, 1 < b < B. At each time t = 0,1,2,... Red
targets a single Blue and shooting continues until either Red is dead or all the Blues are.
Conditional upon the event that a Blue targetted by Red is actually of type b, Red has a
probability 7, of killing Blue while there is a probability 8, that he himself is killed during the
engagement. Red always has perfect information about whether each Blue is alive or dead
and hence the model calls for the inclusion of state &; within €; as mentioned in Section
2(iii) above. All shooting outcomes are assumed independent. Should Red kill a type b Blue
with his #** shot then he receives a return $*R;. Red’s goal is to maximise the expected
return from Blues killed prior to his own destruction. The expectation concerned is taken
both with respect to Red’s prior beliefs as well as over realisations of the process. Note that
the choices 3 =1, Ry =1, 1 < b < B, lead to a maximisation of the number of Blues killed
before Red’s death.

A crucial feature of the model concerns Red’s capacity to update his beliefs about the
Blues he is facing in the light of past engagements by using Bayes’ Theorem. In particular,
if Blue j has been targetted in n engagements and he and Red have survived them all (note
that these are the only event types of relevance for future decision-making) then the posterior
distribution IT%" summarising Red’s updated beliefs about Blue j is given by

g _ G —m)"(1 —6,)"
LT I (1 - 6a)
For notational simplicity, we shall refer to the denominator in (7) as D;(I%, n).

This problem may be represented within the general formulation of Section 2 (i)-(iv) as
follows:

(i) State space §2; is taken to be NU {@,}. If X;(t) = n € N then at time ¢, Blue j has
been targetted in n engagements with Red, all of which have been inconclusive (neither
killed).

1<b< B. (7)

(iii) Should action a; be chosen at ¢ when X;(t) = n then, following the resulting engage-
ment a transition to X;(¢ + 1) occurs according to Markovian law P; where

Pj(n,n + 1) = P(neither Red nor Blue j killed) = D;(I¥,n + 1)/D;(I¥, n);

B
P(n,@;) = P(Blue j killed but not Red) = > Iry(1 — r)"(1 — 6,)"**/D;(1, n),
b=1
and
B .
P(n,w;) = P(Red killed) = > " TI6,(1 — r4)"(1 — 6,)"/D;(I¥, n).
b=1



The expected return (undiscounted) from the engagement in (iii) above is given by

B
Rj(n) =Y IHRyry(1—r)*(1 = 6,)"/D;(IF,n), n € N,
b=1

In following the prescription for index computation at the end of Section 2, note that in
taking the supremum in (6), we may restrict to stationary stopping times i.e., those which
stop the process {X;(t),t > 0} upon entry into a fixed stopping set. Hence, we consider the
computation of index G;(n), appropriate for Blue j in state n € N. Specify positive integer
r and write 7. for Red’s stopping time in which from time 0 (at which point X;(0) = n),
Red has r further engagements which target Blue j unless one or other of them is destroyed
first. The random variable 7. is the number of shots from Red which results from this, and
cannot exceed 7 or be less than one. The expected return R;(n,7,) obtained by Red from
these engagements is given by

B r—1
Ri(n,7) =Y (1 —m)"(1 - 6)" {ZﬂSRbT'b(l =)' (1- 9!1)8} /D;(IF,n),  (8)
b=1

s=0
while we also have

B

BB QAX;(r) N X;(0) = n] = Y TH(1 = r)"(1 - 6,)"
b=1
x {Z B g1 =) (1= 65 + B7(1 = 7)"(L = w} /Di(I¥,n).  (9)
=0

From (5), (6), (8) and (9) and Theorem 1 we deduce the following:

Theorem 2 If Red is still alive at t then he optimally targets any Blue 3* for which X;-(t) #
wj+ and such that

G { X (1)} = max G;{X;(0)},
where the mazimisation is over those j for which X;(t) # w; and where

G (n) = maee | et (L= 7o)"(1 = 80)" {3700 B Rory(1 — o) (1~ )}
! r21 S2 T (L — ro)n(1 = B){1 — Fup(r) — Fa(r)} ’

neN, 1<j<N,  (10)

where
r—1
Fup(r) = B (1 = 10)°(1 = 6,)"", 7> 1, 1<b< B,
3=0
and

ng(’f') = [37‘(1 - Tb)r(l - Gb)T, r 2 ]., 1 S b < B.



In order to understand index structure, introduce the “one-step index” H;(n) obtained
by taking r =1 in (10) as

25;1 Hi(l — 7)1 — 0)" Rymy .
S T = r)n(L = 6)"{1 — B+ 36}

It is straightforward to establish the following:

Hj(n) = (11)

(a) If Hj(n) is decreasing in n then the maximum in (10) is attained at » = 1 for all n
and it then follows that G;(n) = H;(n), n € N. If this behaviour holds good for all
Blues then Red’s optimal shooting policy is quasi-myopic (a one-step look ahead rule).
Here indices decrease through to Blue’s destruction and consequently the optimal index
policy will tend to involve Red making frequent changes to the Blue targetted;

(b) If H;(n) is increasing in n, then the maximum in (10) is attained for all n in the limit
as r — 0o. When this happens the index G;(n) will take the form
iy (1 —7a)"(1 — 6)"Ryr{1 — B(1 = 1) (1 = )}
Ty (1 =) (1 = ,)"{(1 = B+ 86,)[L — B(L = rs)(1 — 65)] 1}

and will be increasing in n. If this behaviour holds good for all Blues then Red, will in
an optimal policy, persist in targeting individual Blues in turn until each is destroyed.

(c) If there are just two Blue types (B = 2), then it can be shown that one of the cases
described in (a) and (b) must hold for each Blue target.

Lemma 3 If B = 2 then either each H;(n) is increasing in n or each H;(n) is decreasing
mmn.

Proof It is straightforward to show algebraically that, for any j and n € N

if and only if

{1 =B+ B86:1}Ryra — {1 — B+ 802} Rir1](1 —r1)(1 — 61)
> [{1— B8+ B6:}Rars — {1 — B+ B2} Ruri)(1 — ra)(1 — 62).

This condition depends upon neither j nor n. The result follows. O

Comments

The one-step index H;(n) in (11) may be thought of (somewhat crudely) as a weighted
average (with respect to the posterior distribution) of a return/exposure index

Ryro{l — B+ B6,}7"

for Blues of type b. This index is high when Rj and 73 are large and when 6, is small.
It is plainly such Blue types which Red should target early. Note the dependence of this
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quantity on ;. Plainly, Red should avoid targetting Blues with large associated 6-values as
such engagements are high risk for him and his early demise will preempt the possibility of
accumulating further returns.

The intuition behind Lemma 3 is that when B = 2, then for a specific Blue, as the
number of inconclusive engagements increases, the balance of Red’s beliefs about that Blue
will move systematically either from it being of type 1 toward it being type 2 or in the
opposite direction. One of these directions will yield an increasing index and one a decreasing
index, depending on whether type 1 or type 2 has the larger return/exposure index.

4 Model 2 - Red inflicts accumulating damage upon
Blue

The model discussed here is rather different in character to those of Sections 3 and 5. While
there is now no Bayesian learning for Red, we do allow the N Blues targetted by Red to
suffer accumulating damage during successive engagements. This is a step in the direction of
shooting problems with targets whose characteristics evolve dynamically. See the comments
in Section 7(b). We shall here make the simplifying assumption that an engagement consists
of a shot by Red at Blue j, say, followed by a retaliatory strike from the Blue targetted.
Further, a severely damaged Blue will be less lethal to Red. Should a Blue's damage be
sufficient, it is deemed to have been killed. To express this, we assume that each Blue can be
in any one of K states, labelled {1,2,..., K} and that this state is observable without error
by Red. As state k runs from 1 to K it represents increasing degrees of damage with K = @;
corresponding to Blue’s death. The Markovian law P? determines how Blue j evolves to
higher damage states under successive attacks from Red, while 6;(k) is the probability that
Blue j can kill Red with a shot when in damage state k, where P, =0, | < k, and 8;(K) = 0.
The general formulation of Section 2 (i)-(iv) should be adapted to this case as follows:

(i) State space Q; is {1,2,..., K} with K =@;.

(iii) Should action a; be chosen at ¢ when X;(t) = k € {1,2,..., K — 1} then, following
the resulting engagement between Red and Blue j a transition to X;(t + 1) occurs
according to Markovian law P; where

P;(k,1) = P(engagement inconclusive, with Blue’s damage k — [)
= Ph{1-6;()}, k<I<K -1

P;(k,@;) = P(Blue killed but not Red) = P;

and
K-1

Pj(k,w;) = P(Red killed) = > Pj8;(1).
=

(iv) The expected return from the engagement in (iii) above is given by
Rj(k) = BR;Pl, k€ {1,2,...,K — 1},

where we assume that the reward R; is received when Blue j enters state K.

8



We consider the computation of index G;(k), appropriate for calibrating Blue j when in state
ke {1,2,...,K —1}. To this end, suppose that X;(0) = k and that Blue j is subjected to
successive engagements with Red. Any stationary positive-valued stopping time 7 on Blue’s
evolving state corresponds to a choice of subset S(k) C {k,k+1,..., K — 1} such that

7 =minft;t > 0 and X;(£) € S(k) U {@;} U {w;}). (12)

The expected return ﬁj(k, T) obtained by Red in all engagements with Blue j up to stopping
time 7 is given by

Ry(h,7) = RiZ{S(R)};
where the quantities {Z]{S(k)}, 1 <1< K — 1} satisfy recursions

ZI{SK)} = PPl +6 D F{l-0;(m)}Z5{S(k)}, 1<I<K -1
mgS(k)
The corresponding reward rate from (5) is given by
Gj(k,7) = RiZH{S(k)}1 - ZL{S(k))] .

In Theorem 4, we use 2(s%+1-K-1} for the collection of subsets of {k,k +1,..., K — 1}.

Theorem 4 If Red is still alive at ¢ then he optimally targets any Blue j* for which X« (t) #
wj+ and such that

G5+ ()} = max Gy {X,(0)

where the mazimisation is over those j for which X;(t) # w; and where
Gy(k) = rél(%§<(RjZ£{S(k)}[1 —-ZH{SN™), ke{L,2,....,K -1}, 1<j <N, (13)

where the mazimisation in (18) is over 2{kA+1L K1},

While there are efficient algorithms for computing the indices in (13) (including the adap-
tive greedy algorithm of Robinson (1982) or the “restart-in-k” construction of Katehakis and
Veinott (1987)) we now introduce plausible assumptions regarding the system’s stochastic
structure which greatly simplify index structure.

Assumptions

(1) For all j, 33X PJ, is increasing in k for each choice of m € {k,k+1,...,K};

l=m

(2) For all 4, 8;(k) is decreasing in k.

Assumption (1) states that in the engagement discussed in (iii) above, Blue’s new damage
state X;{¢ + 1) is stochastically increasing in its old damage state, X;(t). Assumption (2)
states that Blue j becomes less lethal to Red as it is increasingly damaged.



We proceed to develop index G;(k) by introducing quantities

K-1
7] = Z}(¢) = BPjc + B Y_ Pl{1 - 6;(m)}Z,
m=l
K . .
=8> PL{l—0;(m}Z), where Z} =1. (14)

m=l

Lemma 5 The quantity Z}{ is increasing in k, for each j, 1 < j < N.

Proof It is plain that Z%_, < Z& = 1. We shall proceed by induction, will suppose that

Z£+l < Z,{+2 <...< Z}'( and will show that the inequality Z,i < Z,zﬂ follows.
First observe that, from Assumption (2) and the inductive hypothesis, it follows that
{1-6;(k+ 1)} 2L, < {1-0;(k+2)} 2], < ... S {1-6;(K)} 2 = L.

Now, utilising Assumption (1) we have that

K
Zi, =8 Pl {1-6,0}7

I=k+1

= {1~ 6;(k+1)}Z],

K K
+8 3 {1 -6;myz - {1 - 0;( - D}Z ) Pl

1=k+2 m=l
> p{1-6;(k+ 1)} 25,
+8 Y {16,032 —{1-6;0 - )}ZLQ_Fl). (1)
I=k+2 m=l
Similarly, we have that

K
zi =8 Pi{1-6,)}Z]

=k
K
= BPL{1 — 0;(k)}Z] + B{1 — 0;(k + 1)} 2, (> Pl
p | I=k+1 | p |
+8 > [{1-0;myz - {1-0;0-1}Z)Q Pl (16)
I=k+2 m=l

From (15) and (16) we infer that
Z3 (1= B{1 = 0;(k + 1)} = Z{[1 - BP)AL — 6;(R)}] + ZL.1B{1 — ;(k + 1)} (1 — Ply)

and hence that

ZL a1 = BPLAL = 0;(k + DY > Z[L - BPL{1 - 0;(k)}]. (17)
We now use 8;(k) > 6;(k + 1) together with (17) to infer that Z] < Zi,,. The induction
goes through and the proof is concluded. O

10



Theorem 6 Under Assumptions (1, 2), Blue index G;(k) is given by
Gi(k) = RiZJ(1 - Z) ™, ke {1,2,...,K 1}, 1S j <N,
and is increasing in k.
Proof Suppose that X;(0) = k € {1,2,..., K — 1} and that stopping time 7 has associated
stopping set S(k) as in (12), for which P{X;(r) € S(k)} > 0. Use 7 for the stopping time

corresponding to S(k) = ¢. Plainly 7 < 7 with probability one. Utilising the above defined
quantities we have that

G;(k,7) = R;Z{(1 - Z})™*
R;ZI{S(k)} + BIB"I{X;(r) € S(k)}R; 7% ]

= T ZI(S09) + BTG () € SO 2, ]) (%)

But from Lemma 5 we have that,
X;(r) € S(k) = RiZ (o {1 = 2y} 2 RiZi{1 - 2]} = Gk, 7). (19)

From (18) and (19) it follows that
k7 > Rjz,i{S@} T Gk DEBTI{X,(r) € S} - V) 20)

1= Z{S(k)} + B(BI{X;(r) € SI)}1 — Z% ,)))
It now follows immediately from (20) that

Gy(k,7) = RyZI{S(R)}1 - Z{SR)Y ™" = Gy(k,7) (21)

for any 7 and associated stopping set S(k). The result immediately follows from (21) and
the form of the index G;(k) given in (13). The increasing nature of G;(k) follows from the
increasing nature of Zj, reported in Lemma 5. O

Comments

(a) Under Assumptions (1,2), the increasing nature of index G;(k) in k means that in an
optimal policy Red will engage each Blue continually until the latter is killed (unless
Red dies first). This approach is intuitive since Blue’s accumulating damage through
his engagements not only brings his own death closer (Assumption (1)), but also makes
him progressively less lethal to Red (Assumption (2)). Hence it is clear that Red should
continue shooting at a partly damaged Blue and the index policy guarantees that this
is s0.

(b) To see how the index G;(k) depends upon Blue j’s lethality, consider two extreme
cases. Suppose first that Blue j is lethal right up to its own destruction, namely

0;()=1,1<I<K -1
It then follows that

Z =P

11



and hence that
Gi(k) = /@RjPIZ,K{l -~ ﬁPIZ,K}‘1~ (22)

Any shot by Red at such a Blue is a gamble that the latter will be killed with a single
shot. Suppose now that Blue j poses very little retaliatory threat to Red in that

0;(1) =0, 1<I<K -1,

Consider the quantities { Zl’ ,1 <1< K — 1} satisfying the recursions

K
Z{ = PP+ B> PLZILA<ISK-1, Zj =1

Im“m»
m=l

We now have
Gj(k) = R, Z(1 - Z))™ (23)

and Red’s only concern now is the speed with which Blue 5 can be killed and the return
R; claimed. Not surprisingly, the index in (22) will be smaller than that in (23).

5 Model 3 - ‘Shoot-look-shoot’ for Red

Our goal here is to give the reader insight concerning the generality of our modelling/solution
approach by introducing developments of Model 1 of considerable practical import. The
general scenario and I}, Ry, 7, and 3 are all as before. However, now we shall suppose
that after every shot by Red, the targetted Blue is inspected and categorised (with error)
according to Blue target type and alive/dead. Write § € {1,2,..., B} x {alive,dead} for a
generic classification. We have that

P[Blue judged to be §|Blue is alive of type b] = ¢g
P[Blue judged to be §|Blue is dead of type b] = ¢

where 1 < b < B. We shall also suppose that Red’s vulnerability depends upon whether the
targetted Blue is alive or dead. We use 6, for the probability that Red is killed during an
engagement in which he targets a Blue of type b who is still alive. This becomes 8, if the
targetted Blue is dead.

Red now gathers information about the Blues he is facing through the series of engage-
ments in a more complicated way than for Model 1. Index policies will remain optimal, but
the index structure will be more complex and simple closed forms as in (10) and Theorem 6
above should not be expected. Consider Blue target j with assigned prior II/. At time ¢, if
Red is still alive then sufficient statistics from the history of Red’s past engagements which
targetted Blue j which determine Red’s posterior distribution for this Blue are:

(a) the number of engagements targetting Blue j (n);

(b) the outcomes of Red’s subsequent inspections (6 = {d1,ds,...,8,}).

12



We take these sufficient statistics as Blue j’s state at ¢ while Red is alive and write
X;(t) = (n, ). Red’s posterior probability, given this history, that Blue j is of type b and is
still alive is proportional to

(1 —r)"(1 — 6,)" (H ¢<5,b) =T PRy(n, 6) = I P{X,(t)}. (24)

Red’s posterior probability, given this history, that Blue j is of type b but is now dead is
proportional to

n k-1 n
114 Z(l — 1)y (1 — 6,)F(1 = B,)"* <H ¢§,b> <H %3)
1=k

k=1 =1

=IHPy(n,0) = WP{X;(t)}, (25

as before. Hence, given the history summarised by X;(¢), Red’s posterior probabilities for
Blue j are given by

L R{X,(6)}

St TP X5(0)} + Pa{ X5 (0)}]
1<b<B, (26)

P[Biue j is alive and of type b|X;(t)] =

and
P X;(t)}

Yo WP X; ()} + P X,;(1)})
1<b< B. (27)

P[Blue j is dead and of type b|X;(t)] =

Our scheduling problem may be represented within the formulation of Section 2 (i)-(iv)
as follows:

(i) State space €; is the set of all possible histories (n,§). Since in general under this
model, Red can never be certain that Blue j has been killed, there is no state ;.

(ii) Should action a; be chosen at ¢ when X;(t) = (n, 8) there are two modes of transition
to X;(t 4+ 1), depending upon whether Red is killed in the engagement or not. If Red
is not killed, we have a state transition of the form

(n,0) = X;(t) — X;(t)(6) = {n+1,(8,0)} (28)
with probability

o R X (O HQ — 16)(1 — 85)ss + r6(1 — O6)baz} + Po{ X; ()} (1 — ab)%z].

B 11 > (29)
oo IGIRAX; ()} + Po{X;(1)}]
If Red is killed then X;(¢ + 1) = w;. This happens with probability
ot TP X, (8)}6, + Po{X,(£)}80] (30)

Yo LX)} + Po{ X;(t)}]

13



In order to develop the indices which determine optimal shooting policies for Red, it will
assist notationally if we drop the Blue target identifier j and use H for a generic sufficient
history of the form (n, §) above. We wish to obtain G(II, H), namely the index for a Blue
with prior IT and history H. We shall use an adapted version of the “restart-in-H” approach
to index computation proposed by Katehakis and Veinott (1987). See also Glazebrook and
Greatrix (1995). To this end, use Q(H) for the set of histories reachable (in the obvious
sense) from history H and B{Q(H)} for the set of bounded real-valued functions on Q(H).

The “restart-in-H” problem appropriate for index computation is a Markov Decision
Problem with initial state H. Actions at each stage of the process are either that Red
should engage with Blue or that the current state should be reset to H and that Red should
then engage with Blue. Transition probabilities and returns are as above. The process is
terminated by Red’s death at any stage. From Katehakis and Veinott (1987) we infer that
G(II, H) is the value function for this problem. To obtain G(II, H) we use the following
iterative scheme: let uw € B{Q}(H)} and H' € Q(H).

Consider the transform Ty : B{Q(H)} — B{Q(H)} given by

{Tr(w)}(H') = max { (Z 0, P,(H')
b=1

Ryry + fry(1 — 65) Z ossu{H'(6)}
5

+ > ILPy(H)B(1~8)) ¢abu{H’(5)})
b=1 )

+B(L=m) (L~ 6) Y dwu{H'(8)}
[

B -1
x (Z L{ () +E(H')}) ;

b=1

Rury + Bra(1 = 6) Y $gu{ H(@)} + B —r)(1 - 65) Y ¢abu{H(5)}]
) 8

(Z I, Py(H)

b=1

+anz—>b(H>ﬂ(1—%)Z(bszu{H(d)}) (an{Pb(HHE(H)}) } (31)
b=1 ]

b=1
We now use T for an n-fold application of T, namely
Ty =Ty and T = Ty(Te ), n> 2.

Standard results concerning value iteration for discounted Markov Decision Processes (see,
for example, Ross (1970)) yield the value function for the restart-in-H problem as

lim {T§(u)}(H) = G(I, H) for all u € B{Q(H)}. (32)

n—r00

Theorem 7 summarises the results of the above analysis for this case.

Theorem 7 If Red is still alive at t then he optimally targets any Blue j* for which
G, X3+ (1)} = max Gi{IF, X;(¢)},

1<GEN

where the indices are determined by the iterative scheme in (31) and (32).
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6 Numerical Study

We report on the outcome of a simulation study whose aim is to explore statistical properties
of the optimal (index) shooting policy and other competitor policies for Red. This study
will be in the context of instances of a minor variant of Model 1 for which N = 10 (ten Blue
targets) and B =5 (five Blue types). In this variant we suppose that Red cannot be killed
in any engagement in which he kills a Blue opponent. Table 1 contains details of the Blue
types. The reader will observe that model parameters have been chosen such that the Blues
which yield highest rewards for Reds are the most difficult to kill. Targetting these also
makes Red more vulnerable. Red must strike an optimal balance between garnering returns
from Blue kills and remaining alive.

b Tb 91, Rb
11091027 50
2107037 125
[3705]04] 250
410305 500
5(0.1]0.6]| 1000

Table 1: Details of the five Blue types

The study consisted of 40,000 runs - with 10,000 runs being conducted under each of four
different policies for Red. For each run, the 50 probabilities II] are drawn independently
from a U(0, 1) distribution and normalised to achieve

5
S =1, 1<5<10.
b=1

Discount rate 8 was set equal to 0.95 in all cases. The four shooting policies for Red are as
follows:

(I) Index Policy - This is the policy which maximises the expected return earned by Red
before his own death;

(II) Myopic Policy - Here Red’s policy is to shoot next at whichever Blue is still alive
and offers him the highest one-stage return. If Blue j has prior Il and has had n
inconclusive engagements with Red to date, this one-stage return is given by

B B -1
{Z TE(1 —ry)"(1 - 9;,)"&”} {Z (1 —ry)(1 - ab)"} :
b=1 b=1

(II1) Random Policy - At each stage, Red chooses between the still-alive Blues at random,
with all Blue targets equally likely;

(IV) Round Robin Policy - Red cycles around the Biue targets (which are still alive) in
numerical order. The first target is chosen at random.
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For each policy, Tables 2 and 3 contain summaries of the 10,000 runs conducted. Table
2 gives a statistical summary of the returns earned by Red and records the mean return, the
minimum (Min), lower quartile (LQ), median (Med), upper quartile (UQ) and maximum
(Max). Table 3 gives a similar summary for the number of Blue targets destroyed by Red
before he himself is killed. The final column of Table 3 also gives, for each policy, the
percentage of runs for which Red is killed (i.e. before all the Blues are).

Policy Mean | Min { LQ Med uQ Max
Index 402.53 | 0.00 | 50.00 | 250.00 | 600.00 | 3208.32
Myopic 351.25 | 0.00 | 0.00 | 125.00 | 500.00 | 3393.94
Random 359.36 | 0.00 | 0.00 | 168.75 | 525.00 | 3353.82
Round-Robin | 363.73 | 0.00 | 0.00 | 168.75 | 546.52 | 3476.21

Table 2: Summary of Red’s returns using four different shooting policies

Policy Mean | Min | LQ | Med | UQ | Max | % Red killed
1 4

Index 2.41 0 2 10 99.23
Myopic 1.52 0 0 1 2 10 98.90
Random 1.91 0 0 1 3 10 99.01
Round-Robin | 1.87 0 0 1 3 10 99.24

Table 3: Summary of number of Blues killed and Red’s death rate for four shooting policies
for Red.

That the index policy should outperform the others with regard to its mean total return
is guaranteed by Theorem 1. What is of note from the numerical results is its comprehen-
sive dominance of the alternatives studied with regard to all summary measures of returns
obtained and targets killed. The poor performance of the myopic policy is rooted in its
indifference to the issue of Red’s vulnerability when targetting different Blues. Its very low
median return (half that of the index policy) speaks of many conflicts in which Red is killed
very early. The evidence from the study is that in this context it would be better for Red
to shoot at random (or in a round robin fashion) than myopically. In addition to maximis-
ing returns, the index policy also outperforms the others with regard to numbers of Blues
killed - see Table 3. The probability that Red does not survive the conflict is roughly policy
independent.

7 Extensions and comments

A range of extensions to the models discussed in Sections 2-5 is possible for which index
policies either remain optimal or (at least) continue to perform well. See Gaver, Glazebrook
and Pilnick (1991) for a discussion of such model elaborations in a different problem context
and Glazebrook, Gaver and Jacobs (2001) for a discussion which focusses specifically on a
variant of Model 1. Important among such model developments are those which acknowledge
that Red has a finite number of bullets only. We note the following:
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(a) If Red has a finite number of bullets then we have “finite horizon” versions of the
(potentially infinite) scenarios analysed in preceding sections. The index policies de-
veloped there will continue to be optimal for Red in the so-called deteriorating cases
in which each Blue’s index decreases almost surely after each inconclusive engagement.
This will happen, for example, in Model 1 when H;(n) (see (11)) is decreasing in n
for each j. Note from Lemma 3 that when B = 2, the H; are guaranteed to be ei-
ther all increasing or all decreasing. The proof contains a condition under which the
decreasing case is guaranteed. Other versions of the “finite horizon” problem outside
of the deteriorating case are not indexable in general, but index policies will usually
continue to perform very well. Mitchell (2003) has conducted a numerical study of
the performance of index policies for a version of Model 2 in which the Blues do not
retaliate. In the interests of brevity, we shall omit further details other than to point
out that the broad approach to the numerical investigation was as in the study outlined
in Section 6. For scenarios in which Red was limited in the numerical investigation
to 25, 50 and 100 bullets respectively and for which Red had an infinite supply, his
expected return from killing Blues was estimated for four shooting policies. These
policies broadly correspond to those considered in Section 6. In Table 4 below, find
values of 100{(RINVPEX _ RPOLICY) /RINDEXY where we use RINDEX RPOLICY for
the total expected returns for Red under the index policy and under any specified
shooting policy respectively. Please note the outstandingly strong performance of the
index policy in the short horizon (25 bullet) case. By the time Red is assumed to have
50 bullets, the profile of returns is much as in the infinite horizon case. The reader
should note that, in contrast to the results in Tables 2 and 3, different lethalities of
the Blues are no longer present to undermine the performance of the myopic policy.

Number of bullets available to Red
Policy 25 50 100 00
Myopic 7.84% | 5.78% | 5.73% | 5.80%
Random 60.43% | 44.56% | 43.83% | 43.95%
LRound—robin 38.00% | 29.51% | 29.07% | 29.02%

Table 4: Percentage return lost when Red implements a shooting policy other than the
index policy.

(b) In Models 1 and 3, each Blue target is supposed to have fixed characteristics, which
however may be imperfectly known by Red. In Model 1 these are summarised by the
triple (s, 05, Ry) for Blues of type b. In Model 2 target characteristics are dynamic,
and change by means of a process of accumulating damage caused by Red’s shots.
The approach described in the paper and the general model of Section 2 can easily
accommodate evolution of Blue target characteristics during targetting by Red. How-
ever, we may wish to model target dynamics while not underfire. For example, Blue
may wish to re-deploy alive targets not under current fire so as to be more lethal to
Red. This possibility takes us into a class of decision processes which are a generalised
form of the restless bandit problems of Whittle (1988). While restless bandit problems
are intractable in general, Whittle proposed an index heuristic (well defined under
given conditions). These index heuristics have proved outstandingly effective in other
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application contexts. See, for example, Glazebrook, Lumley and Ansell (2003) and
Glazebrook and Mitchell (2002). The first author is conducting an extensive research
programme in this challenging yet important area.

In closing, we briefly consider issues for the Blue force. For definiteness, the discussion will
again be conducted in the context of Model 1, discussed in Section 3. A natural first question
for the controller of Blue concerns what force he needs to deploy to destroy an optimally
shooting Red with a given large probability 1 — ¢. This turns out to be straightforward
to assess. Suppose that N, Blues of type b are deployed, 1 < b < B. The probability of
Red’s ultimate survival (having destroyed all Blues) does not depend upon his strategy for
engaging them. Hence, we may suppose that Red targets each Blue in a continuous set of
exchanges until one or both are destroyed. In such an engagement it is easy to show that

P(Red survives and kills Blue of type b) = HTTI)(;,(;_@"T) =9, 1<b< B,
- T )
P(Red is killed and Blue of type b survives) = ——————~ = A, 1 <b< B,

Ty + 91,(1 - 7'[,)

and

P(Red and Blue of type b are both killed) = robs 7= &, 1<b<B.

Ty + 91,(1 — Ty
Hence the probability that Red survives the battle with N, type b Blues, 1 < b < B, is given
by

B
e
b=1

and this is required to be no greater than €.

If we now ask how the Blue force should accomplish the destruction of Red with given
probability at least cost to itself, then Red’s shooting strategy does come into play since,
for example, Red may tend to target “expensive” Blues first. Now, suppose that Red shoots
optimally with a single weapon and consider a simple scenario for Model 1 in which B =2
and all indices are increasing in n. See Lemma 3. Hence Red’s optimal policy targets each
Blue continuously until one or other is destroyed. Write C'(Ny, Na) for the expected cost to
the Blue force of the deployment of N, type b’s, b = 1,2, against an optimally shooting Red.
We shall assume here that § = 1. Blue’s optimisation problem is

Jpin C(Ni, N2)

subject to Ml <. (33)

We now describe a scenario in which C(Ny, N2) may be computed easily. Suppose that
Red’s prior distributions for the Blues he faces are obtained by moderating initial ignorance
about them (expressed by P(Blue is supposed to be of type b)= 0.5, b = 1,2) by means of
information obtained from a sensor. This sensor can only judge Blue type with error. We
have

P(Blue judged to be of type b;|Blue is of type b2) = @5,
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for all choices of by, by. Hence Red allocates to each Blue one of two possible priors II?, b = 1,2
according to the judgement of the sensor. We have

Dot
Po1 + Pv2

Let X; be a binomial Bin(Ny, ¢11) random variable representing the number of the N; type
1 Blues judged by the sensor to be of type 1 and hence given prior II! by Red. Similarly
Xy ~ Bin(Na, ¢22). Red faces X + N — X5 Blues to which he allocates prior I1! and initial
index G1(0) and N; — X; + X, Blues to which he allocates prior I1? and initial index G2(0).
Suppose that G1(0) > G5(0) and so Red engages first all Blues judged to be of type 1. If
Red faces two or more Blues with the same index, he chooses between them at random. Now
write c(by, by) for the expected cost to Blue when Red engages b; type 1 Blues and by type
2 Blues in random order. If Cy is the cost of deploying a single Blue of type b, then

1Y = P(Blue is of type 1|Blue judged to be of type b) =

(b1 + b2)e(b1, b2) = b {C1(T; + O1) + Uie(by — 1,b02) } 4 ba{Ca(¥y + O2) + Wac((br,b2 — 1)},
¢(0,0) =0

which enables recursive calculation of any c(by,bs). We deduce that the expected cost to
Blue of the chosen deployment is given by

C(N1, N2) = E {c(X1, Ny — X) + U0 %2¢(Ny — X, X)}

and this may now be used in (33). In more complicated situations, Blue’s expected cost
may be computed via suitable development of the methodologies described by Bertsimas
and Nifio-Mora (1996) for multi-armed bandits.
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